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Abstract

The objective of this paper is to propose a strategy for exploiting short-run common-
alities in the sectoral components of macroeconomic variables in order to obtain better
models and more accurate forecasts of the components and, hopefully, of the aggregate.
Our main contribution concerns cases in which the number of components is large, so
that traditional multivariate approaches are not feasible. We show analytically and by
Monte Carlo methods that subsets of components in which all the elements share a single
common cycle can be discovered by pairwise methods. As the procedure does not rely
on any kind of cross-sectional averaging strategy: it does not need to assume pervasive-
ness, it can deal with highly correlated idiosyncratic components and it does not need to
assume that the size of the subsets goes to infinity. Furthermore, the procedure works
both with fixed N and T → ∞, and with [T,N ] → ∞. We perform an application to
the US CPI and find good results of our procedure.
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1 Introduction
There is a clear tendency among statistical offices around the world to produce more disag-

gregated information, both at the regional and sectoral level. One reason for this is that very

often decision makers need to analyse the disaggregates to get specific knowledge of them, to

grasp a better understanding of the aggregate and eventually to make better decisions. How-

ever, the usual macroeconometric analyses that focus on modeling and forecasting economic

aggregates (e.g. GDP, CPI, industrial production, employment, imports and exports, etc) do

not make full use of the large amount of information contained in the disaggregates.

∗Correspondence to Guillermo Carlomagno. E-mail: gcarlomagno@cinve.org.uy.
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The objective of this paper is developing a strategy to discover and exploit short-run com-

monalities in the sectoral components of macroeconomic variables in order to model and

forecast those components. Our main contribution concerns cases in which the number of

components is large and traditional multivariate approaches are not feasible. As an impor-

tant byproduct, this approach allows constructing an indirect forecast of the aggregate that

hopefully could be more accurate than that obtained by direct procedures, as it uses more

information and includes restrictions between the components which could palliate the curse

of dimensionality.

The presence of commonalities in the short-run dynamics of macroeconomic variables has

been extensively documented (see, e.g., Lucas, 1977, Long Jr and Plosser, 1987, Engle and

Issler, 1995, Engle and Kozicki, 1993, Engle and Kozicki, 1993, Vahid and Engle, 1993, Can-

delon et al., 2005, Hecq et al., 2006, Cubadda, 2007, Li et al., 2015). In this paper the study

of common cyclical features in done on the components of macroeconomic series. This is rele-

vant for understanding their interrelations, and consequently for constructing better empirical

models and obtaining more accurate forecasts. As Espasa and Mayo-Burgos (2013) argue, one

should work with the components at the maximum disaggregation level (basic components) be-

cause intermediate sub-aggregates may add up components that do not share common cycles,

what could introduce invalid restrictions in a DGP refereed to the basic components.

Vahid and Issler (2002) analyze the importance of the restrictions implied by common cycli-

cal features for forecasts, impulse-response functions, and variance-decomposition analysis of

economic time series. As they argue, the reduction in the number of parameters of typical

macroeconomic VAR models derived from the existence of common cycles can be substantial,

and much larger than that implied by cointegration. Therefore, remarkable efficiency gains

can be obtained by imposing correct common cycles restrictions, from which forecasting ac-

curacy improvements could follow. In a Monte Carlo study, Vahid and Issler (2002) confirm

that reduced rank models can lead to significant improvements in forecasting accuracy over

unrestricted models.

As Espasa and Mayo-Burgos (2013) show, an important characteristic of the sectoral com-

ponents of macro variables is that they can be grouped into relatively small subsets in which

all of the series show the same short-run dynamic behavior. The existence of those subsets

translates into relevant short-run restrictions in the parameters of econometric models, and

can be exploited to reduce estimation uncertainty and, hopefully, to obtain more accurate

forecasts.

Espasa and Mayo-Burgos (2013) suggest a pairwise procedure to construct those subsets.

Castle and Hendry (2010) also point out the importance of including short-run common fea-

tures restrictions in the individual models for the components in line with Mayo and Espasa

(2009)1.

In the present paper we show that subsets of components that share single common cycles

1A revised version of this working paper was later published as Espasa and Mayo-Burgos (2013).

2



can be discovered by pairwise procedures, similar to those suggested by Espasa and Mayo-

Burgos (2013). Our contributions concern the analysis of the procedure’s asymptotic proper-

ties, a generalization to make it useful when the size of the subsets may be large (what we

latter call ‘relaxation procedure’), a Monte Carlo study in which the finite samples behavior

of the procedure are studied, and an application to the US CPI.

The pairwise strategy consists of testing for common cycles in all of the N(N − 1)/2 pairs

that exist among the N components of an aggregate (N is usually greater than a hundred),

and then, constructing subsets such that in each subset all pairs of elements have a unique

common cycle. Once these subsets are discovered, the restrictions that they imply for the

short-run dynamic behavior of the components can be included in single-equation models for

them. These models can be consistently estimated by OLS. The components not belonging

to any subset can be modeled independently by univarariate models, or by restricting their

forecasts to add up to the forecast of the intermediate sub-aggregate formed by them. This

last possibility can be carried out using the general combining rule proposed by Guerrero and

Peña (2003).

An alternative way to try to discover common cycles between the components of an aggregate

could be the estimation of Dynamic Factor Models (DFM). However, when the cycles are

non-pervasive (i.e., they are common only to a reduced group of components), one of the

assumptions required by the usual estimation procedures (see e.g., Assumption B in Bai, 2003

or Assumption A1 in Doz et al., 2012) is violated, and therefore, these procedures are expected

to perform poorly. Though several approaches to deal with non-pervasive factors have been

proposed in the DFM literature, most of them assume beforehand which series are affected

by which factor (see, e.g., Karadimitropoulou and León-Ledesma, 2013, Moench et al., 2013,

Breitung and Eickmeier, 2015).

Bailey, Kapetanios, and Pesaran (2016) (BKP, hereafter), Bailey, Holly, and Pesaran (2016)

(BHP, hereafter), and Ando and Bai (2016), work with unknown non-pervasive structures. In

these cases every series is assumed to belong to some group, the size of the groups is assumed

to go to infinity, and the usual restrictions of DFM on the cross-correlation of idiosyncratic

components (see e.g., Assumption C in Bai, 2003 or Assumption A2 in Doz et al., 2012) are

required. These assumptions do not fit our framework of interest.

Our procedure is more general than the previous ones in four aspects: First, we do not

assume that all series belong to some group. Second, as we do not rely on any cross-sectional

averaging method, we do not need to assume that the number of components (N) goes to

infinity. Our theory only requires T →∞; N may be fixed or it may also go to infinity. Not

relying on cross-sectional averaging methods gives our procedure a third advantage, namely,

we do not need to restrict the cross-correlation of idiosyncratic components. Lastly, though

in this paper we focus on I(0) series, we will argue in §6 that a generalized version of our

procedure is applicable both when the series are I(0) and when they are I(1). In the latter

case we do not need to differentiate.

There is, however, one aspect in which our procedure is less general than the DFM alterna-
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tives described above. While in those procedures the subsets may have any number of factors,

our main focus is on subsets with single common cycles. Though this data structure may be

reasonable when dealing with the components of a macro variable, which is our main objec-

tive, it might be not when working with several variables which are not the components of the

same aggregate. To palliate this issue, our approach can be generalized to cases in which the

subsets may have two common cycles: one ‘general’ and the other ‘sectorial’, in §6 we describe

this generalization.

The rest of this paper is organized as follows. In §2 we give the precise definitions of common

cycles that are used throughout the paper. In §3 we state the required assumptions and study

the properties of our proposal. In §4 we describe the algorithm for applying the procedure.

§5 is devoted to the Monte Carlo experiments, and in §6 we discuss some possible extensions.

In §7 we include an empirical application to the US CPI broken down in 159 components and

§8 concludes the paper.

2 Concepts of common cycles

Before describing our proposal and studying its statistical properties in detail, in this section

we give a precise definition of the concepts of common cycles that will be used throughout the

paper.

Engle and Kozicki (1993) define a serial correlation common feature (SCCF, hereafter) to

be present when a linear combination of serially correlated time series is an innovation with

respect to the past of the series.

Assume that the data can be represented by a stationary VAR:

Xt = c+
k∑
i=1

ΠiXt−i + εt, (1)

where Xt is an N × 1 vector, εt an iid N-dimensional process and c an N−dimensional vector

of constants. The existence of a SCCF requires the existence of a N × s full column rank

matrix δ such that δ′Xt does not present serial dependence on the past of Xt, which implies

that δ′Πi = 0 for all 1 ≤ i ≤ k. Therefore, we can write Πi = δ⊥ψ
′
i where δ⊥ is the orthogonal

complement of δ (i.e, δ′δ⊥ = 0), and the VAR model can be rewritten as

Xt = c+ δ⊥Ψ′[X ′t−1, ..., X
′
t−k]

′ + εt, (2)

where Ψ′ is a full column rank matrix of dimension N − s×Nk, such that δ⊥Ψ′ = [Π1, ...,Πk].

In this case, δ contains the serial common correlation vectors, and Ψ′[X ′t−1, ..., X
′
t−k]

′ are

the common cycles. Since all the Π′is have a left null space that includes δ, the rank of δ is

the rank of the left null space of Πi. Thus, Πi has rank N − s, for 1 ≤ i ≤ k.

The test for the existence of N−s SCCF is the test for s zero canonical canonical correlations

between X ′t and [X ′t−1, ..., X
′
t−k]

′:
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C(p, s) = −(T − k − 1)
s∑
i=1

ln(1− λi), (3)

where λi (i = 1, ..s) are the s smallest eigenvalues in the canonical correlation problem; T is

the sample size; and k is the number of lags in the model. Under the null that the smallest

s eigenvalues are zero, the statistic has a chi-squared distribution with s2 + sNk + sr − sN
degrees of freedom.

As noted above, Engle and Kozicki (1993) develop their method for stationary variables,

thus, in most cases, the analysis must be carried out for the differenced variables. Vahid and

Engle (1993) extend the framework to I(1) cointegrated systems by proposing a procedure for

estimating SCCF vectors given the existence of common trends.

A natural extension of the notion of SCCF in cointegrated series is to allow the possibility

that the SCCF vectors cancel the short-run dynamics, but are not related in any particular

way with the long-run pattern of the series. That is, there could exist a linear combination of

the differenced series that is an innovation with respect to the past, but only after adjusting

for the equilibrium deviations. This is the concept of weak form of serial correlation common

features (WF) introduced by Hecq et al. (2006). As mentioned in the Introduction, in this

paper we focus on I(0) variables, but our proposal can be generalized to the case of I(1) with

cointegration. As we briefly mention in §6, in that case, we can deal both with SCCF and

with WF structures.

Another interesting extension of the SCCF concerns cases when the commonalities are not

contemporaneous. In a comment to Engle and Kozicki (1993), Ericsson (1993) argues that

a common correlation feature may exist in a multivariate time series, but it does not need

to be contemporaneous as the definition of SCCF requires. To deal with this possibility,

Cubadda and Hecq (2001) introduce the concept of polynomial serial correlation common

feature (PSCCF). Although all the results of the present paper can be generalized to the case

of PSCCF (see §6), in order to keep things simple, we leave that implementation for future

research.

3 Properties of the pairwise approach
The strategy of testing for common cycles between all possible pairs of components, and

then forming single-cycle subsets in which all pairs show a common cycle, relies on the common

cycles being ‘transitive’. That is, it must be the case that if series At and Bt share the cycle,

and series At and Ct also share the cycle, one can conclude that Bt and Ct also have the same

cycle. A simple argument, available upon request, shows that SCCF structures are in fact

transitive.

3.1 Assumptions

Our general framework includes the following four assumptions:

Assumption A The N components are generated by the VAR in eq. (1), which may be gen-
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eralized to include outliers and/or location shifts.

Assumption B The innovations εt of eq. (1) are iid and normally distributed.

Assumption C There is at least one subset containing S1 components (with 2 ≤ S1 ≤ N)

that share a single common cycle (we will use notation S1 as the name of the subset and as

its cardinality).

Assumption D Xit is serially correlated for i = 1, . . . , N .

Assumption E
N√
T
→≤ c as [T,N ]→∞, for some fixed constant c.

Remark 1 In principle assuming that the innovations are iid would be enough for the common

cycles tests to be asymptotically valid, so that the normality imposed in assumption B would be

unnecessary. However, as will become clear later, normality of εt is necessary to guarantee the

validity of the asymptotic inference from the bi-variate models in which we test for common

cycles.

Remark 2 Assumption B is related to the innovations, not to the components. Although

this distinction is not relevant for the Monte Carlo experiments, it is important for empirical

applications. By allowing for outliers and location shifts in the model, it would not be necessary

to assume the normality of the processes Xit. The only requirement is that normality can be

achieved after correcting for a few outliers and location shifts which, as Juselius (2015) argues,

is a quite general assumption in macro-economic VAR models.

Assumption C makes our objective of discovering single-cycle subsets to be relevant, and

assumption D rules out the trivial common cycles that will appear if some components are

white noise. As we argue below, assumption E is required to control false discoveries when we

let N going to infinity.

Remark 3 Instead of assumption D we could require that at least S components satisfy it.

This flexibilization would require testing the significance of the coefficients of the estimated

common cycles (δ⊥). This is how we proceed in the empirical application of §7.

3.2 Statistical properties

Define Sj to be a subset in which all of the series share a SCCF (recall that we are using

Sj both as the name of the subset, and to indicate the number of series inside it). Abusing

notation, we will denote the subset constructed by the pairwise procedure as Ŝj.

The properties of the pairwise procedure for discovering single-cycle subsets must be eval-

uated in three dimensions: i) Potency: The proportion of correct series that are included in

Ŝj. ii) Gauge: The proportion of wrong series that are included in Ŝj. iii) False discovery:

The discovery of nonexistent single-cycle subsets2.

2The terms ‘gauge’ and ‘potency’ are borrowed from Castle et al. (2011).
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3.2.1 Potency

In order to include all of the correct series in Ŝj we should find a single cycle in all of the

Sj(Sj−1)/1 pairs that exist in the true subset. This implies not rejecting the hypothesis s > 0

vs s = 0 for each of those pairs.

If we were testing a single hypothesis, the probability of not falsely rejecting the null would

be 1−ϕ (with ϕ being the nominal size of the individual tests). When m tests are performed,

if they are independent, the probability of not making any false rejection reduces to (1−ϕ)m,

and the probability of making at least one error is 1− (1− ϕ)m, which rapidly increases with

m.

In our case of interest, m = Sj(Sj−1)/2 may be quite large. Thus, if tests are independent,

the probability of including all of the correct series in Ŝj will be close to zero. Simulation

results (available upon request) show that, under some circumstances, common cycle tests

between the series in Sj may be independent. This means that the probability of including all

of the correct series in Ŝj may be a rapidly decreasing function of the number of series in the

true subset. This would be an undesirable property for our procedure.

To mitigate this problem we exploit two facts. First, since the tests are transitive, and each

series is included in several pairs, we could infer the correct result for one pair using the results

of other ones. In the example at the beginning of this section, we could infer the existence of

a common cycle between Bt and Ct, given that it exists between At and Bt and At and Ct.

Our strategy for exploiting the transitivity consists of, instead of requiring that each series

in Ŝj passes the pairwise test for a common cycle with all of the other series in the subset,

letting a series entering into Ŝj when it passes the test with almost all of the other series in

the subset. We call this strategy a relaxation strategy (step iii of the algorithm in §4).

Second, since the asymptotic power of common cycle tests is 1 (the probability of finding

s > 0, when s = 0, goes to zero as T goes to infinity), for finite N , the relaxation strategy is

asymptotically costless in terms of gauge.

The relevant question now is how this relaxed procedure is expected to perform in terms of

potency. In what follows we develop an informal argument suggesting that the procedure is

to be expected to have high potency asymptotically (large T ).

When performing the N(N − 1)/2 tests for the whole set of components, the asymptotic

probability of not rejecting the null of s > 0 for each individual pair formed by two series of Sj

is 1− ϕ. For any other pair this probability is zero. Hence, a natural way to see the problem

of finding a single-cycle subset is in terms of the theory of random graphs.

To put it simple, a random graph can be seen as a square symmetric matrix of zeros and ones

in which each entry has probability p of having a one and 1−p of having a zero, independently

of the other entries. When the (i, j)th entry is a one, we say that there is an edge between the

nodes i and j and they are connected (for a detailed analysis of random graphs see Newman,

2009). In our case, the symmetric matrix is N×N and the (i, j)th entry corresponds to the pair

formed by series i and j. Thus, ones would appear in those pairs of series for which a common
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cycle was found. Although when testing for common cycles the edge probabilities might not

be independent, the case of independence is the worst possible one for having high potency,

so there is no risk in keeping this assumption for analyzing the potency of our procedure.

Additionally, as the asymptotic probabilities of having an edge between pairs in which the

series do not belong to the same Sj are zero, we can focus on the sub-graphs formed by the

series in a particular Sj.

As we describe in 4, our procedure starts looking for the largest single-cycle subset. Find-

ing the largest single-cycle subset, is equivalent to finding the largest almost fully connected

subgraph — i.e., the largest subgraph in which almost all possible edges are present. This is

closely reltated to the maximal clique problem described in the random graph literature. The

maximal clique is defined as the largest subgraph in which all nodes are pairwise connected

(see, inter alia, Matula, 1976; Derényi et al., 2005; and Newman, 2009).

To get an intial idea about the potency of our procedure, we use the results in Derényi et al.

(2005). The authors find the minimum edge probability for which all elements of a graph

of size Sj will be almost surely connected with, at least, k − 1 other elements. The authors

denote this probability as percolation probability and it is given by

pc(k) =
1

[(k − 1)Sj]
1

k−1

(4)

Using eq. (4), we can fix a proportion ρ and choose k = ρ(Sj − 1) + 1, such that eq. (4)

will give the edge probability required to find a subset of size Sj in which, for each series, a

common cycle will be found with at least ρ(Sj − 1) of the remaining series.

Figure 1 shows this threshold probability for different alternatives of ρ and Sj. These

probabilities can be seen as the required magnitude for (1 − ϕ) for finding the almost fully

connected graph we are looking for (recall that ϕ is the nominal size of the individual common

cycles tests). For instance, for Sj = 40 and ρ = 0.8, we would need (1 − ϕ) = 0.8, meaning

that with a ϕ smaller than or equal to 0.2 we would find the almost fully connected subset we

are looking for almost surely.

Conversely, if we stick to the strict full connection criteria, under independence, the proba-

bility of including all of the correct series in the estimated Sj would be (1− ϕ)
Sj(Sj−1)

2 , which

is virtually zero even for small values of ϕ and moderate Sj. This implies that relaxing

the requirement from full connection, to almost full connection may lead to a an important

increment in the probability of including all of the correct series in the estimated Sj.

In deriving eq. (4) Derényi et al. (2005) assume Sj → ∞. Thus, eq. (4) could be a rough

measure of the percolation probability when Sj is fixed.

To better understand the properties of the relaxation procedure when Sj is fixed, we perform

a small simulation study that replicates the case of T →∞ and Sj fixed. Simulations for finite

T are delayed to §5.

In each of the 5000 experiments we simulate a random graph of size Sj with independent
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Figure 1: Percolation probabilities pc(k), for k = ρ(Sj − 1) + 1

edge probability p. This is done by generating a square symmetric matrix with zeros and ones

in which each entry has probability p of having a one and 1−p of having a zero, independently

of the other entries.

The asymptotic probability of finding a common cycle between two series that truly have

it is 1−ϕ. Hence, by fixing p equal to 1−ϕ this simulation replicates the random graph that

would be obtained when testing for common cycles between all of the pairs among Sj series

that share a unique common cycle, when T →∞, and using a nominal size of ϕ for each test.

We consider two values of p (0.95 and 0.99) and compute the average relative size of

the estimated Sj (mean(Ŝj/Sj)) and the probability of including all of the elements in Ŝj

(mean(IŜj=Sj
)), both when applying the strict full connection criteria and when relaxing it.

For relaxing the strict full connection criteria, we apply the algorithm described in §4 to find

the largest almost fully connected subset (in that algorithm, the relaxation parameter λ is

defined as the maximum number of tests that a series can fail and still enter into Ŝj).

The results are included in Table 1. As a general conclusion, the relaxation procedure allows

reaching acceptable results even when regular significance levels are used. For example, with

a nominal significance level ϕ = 0.05, when the true dimension of the set is 50, the expected

ratio of the size of the estimated subset to the true size of the subset is 0.97.

In summary, when T goes to infinity, our procedure is expected to have high potency,

regardless of the size of Sj; when Sj → ∞ eq. (4) applies, when Sj is fixed results in table 1

suggest that potency will also be high.

3.2.2 Gauge

To include wrong series in some Ŝj common cycle tests should lead to concluding s = 1

when the true hypothesis is s = 0, i.e., not to reject the false null hypothesis of s > 0.

Let Xout be a series outside Sj and let Wi be the event of wrongly not rejecting s > 0 with

the ith series in the estimated Sj (Ŝj). As for wrongly including Xout in Ŝj we need to find
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Table 1: Fully connected vs almost fully connected subsets

S=5 S=10 S=25 S=40 S=50

p = 0.95

Full contection
mean(Ŝ/S) 0.91 0.83 0.69 0.61 0.55
mean(IŜ=S) 0.59 0.10 0.00 0.00 0.00

Almost Full conection
mean(Ŝ/S) 0.99 0.95 0.98 0.97 0.97
mean(IŜ=S) 0.94 0.58 0.56 0.27 0.25

p = 0.99

Full contection
mean(Ŝ/S) 0.98 0.96 0.90 0.85 0.83
mean(IŜ=S) 0.90 0.64 0.05 0.00 0.00

Almost Full conection
mean(Ŝ/S) 1.00 1.00 1.00 1.00 1.00
mean(IŜ=S) 1.00 0.97 1.00 1.00 1.00

- The relaxation parameter (λ) is max(1, 0.2S).
- ‘mean’ denotes the mean across experiments.
- The number of experiments is 5000.
- Ŝ is the number of series included in the largest (almost) fully connected subset.

- IŜ=S denotes the indicator function that takes the value 1 if Ŝ = S and 0 otherwise.

a common cycle with ρŜj other series, we need to wrongly not reject ρŜj hypotheses. The

probability of this event is P (W1 ∩ ... ∩WρŜj
), and can be factorized as

P (W1 ∩ ... ∩WρŜj
) = P (W1|W2, ...,WρŜj

)× ...× P (WρŜj−1|WρŜj
)× P (WρŜj

), (5)

where P (Wi) is the marginal probability of not rejecting the false hypothesis of s > 0. Using

the extreme assumption that all the ρŜj − 1 conditional probabilities in eq. (5) are equal to

1, the probability of wrongly including Xout in Ŝj would be equal to P (Wi), which, as the

asymptotic power is 1, tends to zero as T goes to infinity.

Note that when s = 0 the eigenvalue λ1 of eq. (3) is be strictly larger than zero and the test

statistic for the hypothesis s > 0 vs s = 0 diverges at the rate of T . Thus, P (Wi) is Op(T−1).

Define now Zh as the random variable that takes the value one if the variable h is wrongly

included in Ŝj and zero otherwise. Then, the number of wrong inclusions is

N−Sj∑
h=1

Zh, (6)

and the expected number of wrong inclusions is

E[
∑N−Sj

h=1 Zh] =
∑N−Sj

h=1 E[Zh] = (N − Sj)E[Zh]. (7)

Thus, the expected proportion of wrong elements in the estimated single-cycle subset (ω) is

E[ω] =
(N − Sj)E[Zh]

Ŝj
. (8)
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Under the extreme assumption that all conditional probabilities in eq. (5) are equal to one,

E[Zh] = P (Wh). Since P (Wh) is Op(T−1), using assumption D, limT→∞E[Zh] = 0. When N

is fixed and T goes to infinity, eq. (8) is Op(T−1), meaning that the gauge tends to zero as

T →∞. When both N and T go to infinity, in order to avoid having eq. (8) growing without

limit, we need N/Sj to be, at most, Op(T ). Clearly, this condition includes cases in which the

common cycles are not pervasive, i.e., N/Sj →∞, so that we will have good gauge properties

even in that case.

Note that, by imposing N to be at most Op(T 1/2), assumption E ensures N/Sj being at

most Op(T ), but in a very restrictive way. As will became clear below, that assumption is

necessary for controlling false discoveries.

Previous argument can also be made without relying on the asymptotic power of the common

cycle tests. A proof of this statement is available upon request.

3.2.3 False discovery

Define M = N −
∑

j Sj as the number of series which do not belong to any single-cycle

subset, M∗ = M(M−1)
2

as the number of pairs between those series, and Ym as a random

variable that takes the value 1 if a common cycle is wrongly found for the pair m. Using the

same reasoning as that used for expressions 7 and 8, the expected number of false discoveries

(the number of pairs for which a common cycle is wrongly found) is M∗ × E[Ym].

Since E[Ym] = p (with p being the probability of wrongly finding a common cycle in one of

the M∗ pairs), and p → 0 as T → ∞, for finite N , the expected number of false discoveries

tends to zero. When N → ∞, a sufficient condition for having a fixed expected number of

false discoveries is M∗× p→ 0, which requires N −
∑

j Sj to grow a rate less than or equal to

that of p−1/2. This implies that N −
∑

j Sj can grow, at most, at the same rate as T 1/2 (see

assumption E).

3.3 Partial models

The pairwise strategy described in previous sections requires partial systems’ estimation in

the sense that we assume the existence of a full VAR model for all of the components but

estimate several partial bi-variate systems in which we test common cycles.

Linear transformations of processes that follow VAR models have an infinite VAR represen-

tation with exponentially decreasing coefficients’ matrices (see Johansen and Juselius, 2014),

so that the bi-variate models in which we test common cycles will be, in general, approxima-

tions to the true data generating process.

If the innovations of the infinite VAR representation are iid, the lag length is, at most,

Op(T 1/3), and finite order VAR models are fitted with a lag length that increases with T ,

usual asymptotic inference is still valid (see, Saikkonen, 1992, Saikkonen and Lütkepohl, 1996

and Johansen and Juselius, 2014). To the best of our knowledge, this result has not been proven

for non-iid innovations and non-Gaussian innovations. As shown by Johansen and Juselius

(2014) the innovations of the linear transformations will be white noise but not necessarily

iid, except if the original innovations are Gaussian iid. In the latter case the innovations of
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the linear transformations will also be Gaussian iid.

Thus, in order to guarantee that our bi-variate models are valid for inference, we need

Gaussian iid innovations in the model of eq. (1). This explains assumption B.

Apart from previous discussion, the strategy of testing for common cycles in partial models

could be thought to imply a loss of power compared to a ‘complete’ model approach (when

feasible). To analyze this issue, we performed a small simulation study to compare the ability

of the pairwise approach with that of the full model approach, when the latter is feasible (small

N). Since our focus in this paper is on relatively large N , we do not report the results (available

upon request). The main conclusion of those experiments is that when common cycles are

pairwise detectable, nothing is lost by proceeding in a pairwise fashion. On the contrary,

important power gains for finding the true number of common cycles in short samples can

result from this procedure, compared to the full model approach.

4 The algorithm
In order to discover subsets Sj — within a set of N series — in which all of the series share

a single cycle we apply a six-step algorithm:

i. Perform common cycle tests between all possible pairs of series, store the resulting p-

values, and construct an N × N Boolean adjacency matrix, A, that contains a 1 in the

(i, j)th entry if the corresponding pair has a common cycle (the null of s > 0 has not been

rejected) and zero otherwise.

ii. Find the maximal clique in A, for example, using the Bron-Kerbosch algorithm (see Bron

and Kerbosch, 1973). Recall that the maximal clique is defined as the largest subgraph

in which all nodes are pairwise connected (see also Bollobás and Erdös, 1976). We will

refer to the maximal clique as the largest single-cycle subset, Ŝ1.

iii. Define a relaxation parameter (1 6 λ < Ŝ1, with Ŝ1 being the number of series in the

estimated largest single-cycle subset) to identify the candidates for entering into the almost

fully connected subset. A series outside the original subset Ŝ1 is a candidate if it satisfies

two conditions:

(a) A single cycle — at the original nominal size, ϕ — was found in step i with at least

Ŝ1 − λ of the series already in the subset Ŝ1.

(b) When the nominal size of the test is relaxed to ϕ∗, the candidate is found to have a

common cycle with all the series already in the subset Ŝ1.

iv. Using previous results, construct the set of candidates C0.

• If all the candidates have a common cycle between each other (with the original

nominal size, ϕ), let all of them enter into Ŝ1 and go to Step v (because there are no

more potential candidates).
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• If not, find the maximal clique (see Step ii) inside C0 and enlarge Ŝ1 with all the

series in this maximal clique. Note that after including these series, there could still

remain some potential candidates. To check for this possibility: construct a new

set of candidates C1 (these candidates must satisfy conditions iiia and iiib with the

enlarged Ŝ1), and repeat the procedure in the present Step.

• If, according to conditions iiia and iiib, there are no candidates that share the cycle,

try to include them sequentially, starting with the one which has a common cycle

with more of the series already in the subset. In case of a conflict (i.e., there are

candidates that share the cycle with the same number of variables already in the

subset), use the p-values stored in step i to decide. An ad hoc criterion could be,

for example, to include the series whose sum of p-values for the null s > 0 is the

minimum.

v. In order to find other single-cycle subsets repeat steps ii to iv but excluding the series

already included in some almost fully-connected subset. This will lead to discover other

almost fully-connected subsets with descending sizes.

5 Simulations
In this section we perform some Monte Carlo experiments to analyze the finite sample

properties of the procedure.

5.1 Design of the experiments

We consider two alternative DGPs. Both of them have the same general structure:

Xt = c+ ΠXt−1 + εt, (9)

where εt ∼ N(0,Σ), and the roots of det(I − ΠL) are all outside the unit circle. We simulate

situations in which only a subset of S1 series share a single cycle and there are no more common

cycle restrictions in the system. In order to simplify the dynamics of the systems, Π has the

following structure:

Π =

[
AS1×S1 0

0 DN−S1×N−S1

]
, (10)

where A = δ∗⊥Ψ∗
′
, with δ∗⊥ and Ψ∗ being S1 × 1 vectors (see §2 for a justification of this

structure), and D a diagonal matrix. This does not imply that series outside S1 are indepen-

dent of each other, or with respect to series inside S1, as Σ is not necessarily diagonal (the

correlation structure of the innovations is detailed below). Partition the vector Xt into its

first S1 elements and the remaining N −S1, and denote the first sub-vector as XS1
t . Then, the

common cycle is Ψ∗
′
XS1
t−1, and δ∗⊥ contains the coefficients of the common cycle in each of the

first S1 series.

Calling πij the elements of Π, it can be shown that, after imposing the condition that
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|πii| < 1, ∀ i ≥ S1 + 1, the stationarity condition of eq. (9) is:

|
S1∑
i=1

diψi| < 1.

where di and ψi are the elements of δ∗⊥ and Ψ∗
′
, respectively.

There are infinitely many different possibilities for δ∗⊥ and Ψ∗ that would satisfy the sta-

tionarity condition. Three of them that may be of interest are

DGP 0 : δ∗⊥ is filled with uniform random values between 0.7, and 1 and Ψ∗ is filled with

uniform random values between 1
1.2S1

and 1
1.1S1

.

DGP 1 : The same as DGP 0 but imposing z zeroes in Ψ∗ so that we can change the S1 in

the denominator to S1 − z and the non-zero entries will be larger. We set S1 − z = 2,

so that the common cycles will be generated by two of the series in S1 (those whose

coefficients in Ψ∗
′

are different from zero).

DGP 2 : The same as DGP 1 but allowing some negative values in δ∗⊥ (there will be some

counter-cyclical variables). This allows increasing the non-zero values in Ψ∗ with respect

to option DGP 1. We limit the number of negative coefficients to 20% of the variables

in δ∗⊥. Hence, the number of non-zero coefficients in Ψ∗ is (2 + 0.2× S1).

Note that in DGP 0 all the entries of ψ will be rather small, even for relatively small S1.

Thus, in order to statistically distinguish those values from zero, we would need quite large

samples. To avoid this issue, we focus only on DGPs 1 and 2.

Finally, the innovations εt are generated by

εit = ηi,t +

min(Q,i−1)∑
j 6=0, j=−Q

βηi−j,t, (11)

where ηt ∼ N(0, IN).

In this way, when β 6= 0 and Q 6= 0, the residuals of each equation are cross-correlated with

another 2Q residuals. To avoid having higher cross-correlation inside S1 than outside it, the

rows of matrix Π in eq. (10) are randomly disordered so that series inside the subset S1 are

not in the first S1 positions of vector Xt. We consider four alternative combinations for β and

Q: [β = 0, Q = 0], [β = −0.3, Q = 10], [β = −0.3, Q = 20], and [β = −0.3, Q = 30].

For the two DGPs we consider three scenarios and three sample sizes. In all cases N = 100.

In scenario 1 we set S1 = 10, in scenario 2, S1 = 25; and in scenario 3, S1 = 40. The sample

sizes are T = 100, T = 200, and T = 400.

For each DGP, scenario, and sample size, we perform 500 Monte Carlo replications. Our

objective is to discover the series that are in S1. To do that, we carry out SCCF tests on all the

4950 bi-variate VAR sub-models that exist among the 100 series. Thus, for a particular DGP,
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scenario and sample size, we have 2.475 million sub-models (4950 for each replication). Since

we have two DGPs, three scenarios, and three sample sizes, we have (2×3×3)×2.475 = 44.55

million sub-models to estimate. Additionally, since the lag length for each of the 4950 sub-

models of a particular replication is unknown, we select it with the AIC, admitting between

one and five lags. This multiplies the number of models by 5. Furthermore, as we consider

four alternative combinations for β and Q of eq. (11), this further multiplies the number of

models by 4.

Finally, a relaxation parameter λ has to be defined, i.e., we need to define the maximum

number of tests that a series can fail and still enter in Ŝ1 (see step iii of the algorithm). Our

baseline choice is to set λ = 0.4 × Ŝλ=0
1 , where Ŝλ=0

1 is the number of series in the subset

obtained using λ = 0.

A word about the computing time is now in order. In a personal computer equipped with

Windows 10 64 bits, with a processor i7-6700HQ of 2.60Hz, and 16GB of ram it takes 7.8

seconds to perform the 4950 pairwise tests selecting models between 1 and 5 lags.

5.2 Monte Carlo results

Table 2 includes the gauge and potency of the pairwise strategy for DGP 1 and λ = 0.4×
Ŝλ=0
1 , results for different choices of λ are included in appendix A. As analyzed above, false

discovery is not an issue asymptotically and it turns out not be relevant in finite samples

either. Thus, for clarity, we omit the results about false discovery in this part of the paper

and include them in appendix B. As the conclusions for DGP 2 are the same, the details are

omitted, but are available upon request.

As expected from §3.2, the gauge of the pairwise procedure is close to zero for all scenarios

and sample sizes, independently of whether residuals are cross-correlated or not. The results

in terms of potency are also very good, as we get values above 0.9 in all cases (except for the

case of T = 100 with independent innovations).

Table A.1 in appendix A replicates the results for values of the relaxation parameter, λ that

are smaller than or equal to the one used in Table 2. The choices are λ = 0 (no relaxation),

λ = min[2, 0.4× Ŝλ=0
1 ], λ = min[5, 0.4× Ŝλ=0

1 ] and λ = min[10, 0.4× Ŝλ=0
1 ].

Two main conclusions emerge from table A.1. First, the relaxation leads to great improve-

ments in potency. For example, in scenario 3 (S1 = 40) with independent innovations and no

relaxation we get potencies of 70.2, 65.8 and 52.0 for T = 400, T = 200, and T = 100, respec-

tively. With λ = min[2, 0.4× Ŝλ=0
1 ] we already get a great improvement — of, approximately,

15 percentage points — for all sample sizes. This improvement in potencies continues up to

the figures in table 2 which are around 25 percentage points higher than those with λ = 0.

These observations are also valid for the other scenarios and correlation of innovations.

The second conclusion from table A.1 is that the improvements in potency derived from the

relaxation procedure are almost costless in terms of gauge. Gauges in table 2 are almost the

same as those in the first block of table A.1 (λ = 0), and very close to zero as well.

These two conclusions were expected from the analysis in §3.2.
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Table 2: Gauge and potency of the pairwise procedure. DGP 1 (λ = 0.4 × Sλ=0, ϕ = 5%,
ϕ∗ = 0.5%)

S1 = 10 S1 = 25 S1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent innovations)

T = 400 0.0 97.9 0.0 95.4 0.0 93.9
T = 200 0.0 97.2 0.0 94.0 0.0 92.2
T = 100 0.2 88.2 0.2 83.1 0.1 79.1

β = −0.3, Q = 10 (non zero corr. with 20 other innovations)

T = 400 0.0 97.1 0.0 96.1 0.0 94.8
T = 200 0.0 96.9 0.0 95.6 0.0 93.7
T = 100 0.1 93.3 0.1 91.6 0.0 89.3

β = −0.3, Q = 20 (non zero corr. with 40 other innovations)

T = 400 0.0 97.4 0.0 96.5 0.0 94.6
T = 200 0.0 96.3 0.0 95.6 0.0 94.2
T = 100 0.1 94.6 0.1 92.2 0.1 90.5

β = −0.3, Q = 30 (non zero corr. with 60 other innovations)

T = 400 0.0 97.2 0.0 95.2 0.0 94.6
T = 200 0.0 96.7 0.0 95.6 0.0 94.3
T = 100 0.1 95.2 0.1 93.4 0.1 91.0

- Number of experiments: 500.
- Gauge = 100

(N−n1)Nexp

∑Nexp
i=1 Z2,i

- Pot = 100
n1Nexp

∑Nexp
i=1 Z1,i

- Z2 = number of wrong series included in Ŝ
- Z1 = number of correct series included in Ŝ
- Nexp = number of experiments

As discussed in the Introduction, an alternative strategy to ours could be the estimation of

Dynamic Factor Models. As we argued above, since we are dealing with non-pervasive factors,

small sizes of the groups, and cross-correlated idiosyncrasies, DFM cannot be expected to show

a good performance. Still, as the DFM assumptions about pervasiveness, and cross-correlation

of the residuals are asymptotic, it could be of interest to compare our approach with the DFM

alternatives.

We applied the usual Principal Components strategy and the QML approach of Doz et al.

(2012), and grouped the series with statistically significant factor loadings. Results (not

reported) are comparable to those of table 2 only for cases with S1 ≥ 25, T ≥ 200, and Q =

β = 0. This was to be expected as those cases might satisfy the assumptions of pervasiveness

and limited idiosyncratic cross-correlation. Small alterations of these conditions make the

DFM alternatives to fail.
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6 Possible extensions

In this section we describe some possible extensions of our procedure that are not imple-

mented in this paper.

As mentioned in §2 the pairwise approach can be generalized to consider I(1) variables

that may have cointegration relationships, and to allow non-contemporaneous short run com-

monalities. These extensions require considering WF and PSCCF (see §2) instead of SCCF

structures. Although when considered in a pairwise fashion these structures are not transi-

tive, simple modifications of the testing strategy make them so, and the extensions can be

implemented.

A third extension of interest is allowing subsets with more than one common cycle. In this

paper we focused on the case that the data can be grouped into subsets in which the series

inside them share just one common cycle. As Espasa and Mayo-Burgos (2013) argue, this

situation is a good approximation to the reality when dealing with the components of a macro

variable.

Nonetheless, when dealing with a large data set of macro variables (not necessarily the

components of a single one), the situation could be different. It is usual in the litterature

to see a general factor that affects more or less all variables and sectorial factors that affect

specific groups (see, e.g., Karadimitropoulou and León-Ledesma, 2013, Moench et al., 2013,

and Breitung and Eickmeier, 2015).

In this case, the pairwise procedure proposed in this paper will not be applicable. However,

assuming that in the set of N series there is a subset of series that just have the general cycle,

our approach could be adapted to this situation. Under this assumption we could proceed

with the following algorithm:

(i) Apply the pairwise procedure proposed in this paper. This will lead us to discover the

subset of series that only have the general cycle — call it S0. (ii) Test for a common cycle

in all of the triplets formed by each of the series inside Ŝ0 and every pair of outsiders. Since

there are (N−Ŝ0)(N−Ŝ0−1)
2

pairs, we have Ŝ0 × (N−Ŝ0)(N−Ŝ0−1)
2

triplets. For the triplets in which

the outsiders have the same sectorial cycle, we will find two common cycles (s = 1) because

all the series share the same general cycle. (iii) Construct an (N − Ŝ0)× (N − Ŝ0) symmetric

adjacency matrix for the series outside Ŝ0 such that each entry of this matrix represents a

pair of the components outside Ŝ0. Each of those pairs belongs to Ŝ0 different triplets: one for

each element of Ŝ0. Then, in each entry of the adjacency matrix, put a 1 if almost all of the

corresponding Ŝ0 triplets have two common cycles; otherwise, put a 0. (iv) Look for maximal

fully connected sub-graphs in the previous adjacency matrix. This would lead us to discover

the general and the sectorial cycles.

7 Empirical application to the US CPI

In this section we apply the pairwise procedure analyzed in previous sections to the US

CPI. For space reasons we focus just on the forecasting exercise, detailed results about the
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common cycles tests and the resulting single-cycle subsets are available upon request.

The main aim of the disaggregated analysis proposed in this paper is to arrive to a better

understanding, modeling and forecasting of the components of a macro variable, which at

the same time would lead to a better understanding of the aggregate. As a by-product of

the disaggregated analysis we obtain an indirect forecast of the aggregate that consists of

aggregating the forecasts of the components.

In arriving to the specification of the single-cycle subsets and to the forecasting models of

the components we apply a battery of tests, which give guaranties to the validity of the results.

But if the single-cycle subsets are going to be really relevant we expect that the mentioned

indirect forecast for the aggregate is not significantly worse — hopefully significantly better

— than the direct forecast. Therefore, comparing a direct forecast coming from a scalar

model for the aggregate with this indirect one is a good way to evaluate the overall forecasting

performance of our procedure.

In applying our procedure to a macro variable we could find that at its maximum level

of disaggregation there are components which move mainly by steps. In a CPI index this

happens because those components incorporate administrative prices or prices which usually

are only revised once a year. In developed economies the total weight of those components in

a macro variable is, in general, small. In order to identify single-cycle subsets of an aggregate,

A, the moving-by-steps components should be excluded. We denote as A∗ the aggregate that

exclude the mentioned components. Then, the comparison between the indirect forecasts with

direct ones should be referred to A∗.

In the presence of moving-by-steps components, an indirect forecast of the overall aggregate,

A, could be obtained from a regression of A on its corresponding A∗. A more accurate

procedure could be to forecast the moving-by-steps components individually and aggregate

those forecasts to the forecast of A∗.

7.1 Data

The CPI breakdown used in this analysis corresponds to the maximum disaggregation level

available to the public in the Bureau of Labor Statistics (seasonally un-adjusted CPI-U for all

urban consumers) for the period 1999.1 − 2016.12 (216 observations)3. The total number of

components is 174. Not all the series have data for the whole sample. After dropping those

with less than 150 observations we keep 169 components. From these series we exclude nine

that evolve by steps so that we end up with 160 series that, considering the 2016 weights,

represent 92% of the CPI4. Among the remaining series, the item Owners’ equivalent rent of

primary residence weights approximately 24% of the CPI (a single component with such a

large weight is a rare case).

3Series are available at https://download.bls.gov/pub/time.series/cu/ or upon request.
4The nine excluded series are: Tuition other school fees and childcare, College tuition and fees, Elementary

and high school tuition and fees, Child care and nursery school, Technical and business school tuition and fees,
Postage, Delivery services, Limited service meals and snacks, Other lodging away from home including hotels
and motels
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In order to avoid that the global results could be driven by the forecast accuracy of a

single series, we also exclude Owners’ equivalent rent of primary residence from the analysis.

Thus, all in all, we will work with 159 series, the remaining ones are neither considered for

the construction of the single-cycle subsets, nor for the forecasting exercises. We denote the

aggregate corresponding to the 159 series as CPI∗.

7.2 Design of the forecasting exercises

In order to obtain economically and statistically sensible common cycles restrictions between

the components of the CPI∗ we consider only those in which the coefficients δ⊥,i of both prices

are statistically significant, and the ψi are stable over time.

Common cycles tests are performed at the 5% of significance in a VAR in differences and

the number of lags for each pair is determined with the AIC. Centered seasonal dummies

and outliers’ indicators detected with Impulse Indicator Saturation (IIS) are included in all

models5. IIS is a procedure that saturates the model with one indicator variable for each

observation and selects the relevant ones (see Santos et al. (2008), Johansen and Nielsen

(2009), and Castle et al. (2012)).

Using a relaxation parameter λ = min[10, 0.2 × Ŝλ=0
j ], we found 8 subsets that jointly

include 46 series, which represent 28.9% of the components and 26.1% of the total weight of

the CPI∗. Using λ = min[10, 0.4× Ŝλ=0
j ] produce similar results, both in terms of the specific

subsets, and the total series and weights.

For building the single-equation models that will be employed to forecast the 159 compo-

nents, we use the automatic model selection algorithm Autometrics. Starting from a General

Unrestricted Model (GUM) that includes all potentially relevant regressors, and using a mul-

tiple path search, Autometrics reduces the GUM to a simpler model that encompasses it and

passes a battery of diagnostic tests (see Doornik (2009) and Castle et al. (2011)). The specific

GUMs considered in this application are detailed latter on table 3. Additionally, we control

for data irregularities in the models by including impulse indicators in periods with large

residuals6.

To assess the forecasting accuracy of our procedure we compare the forecast of the aggregate

obtained indirectly by aggregating the forecasts of the components with a direct forecast

coming from a scalar model for the aggregate, and with an indirect procedure in which all

components are forecast with single-equation models that do not incorporate common cycle

restrictions. We denote our indirect approach by I-PW (the ‘I’ stands for indirect and ‘PW’

for pairwise), the direct one by D, and the unrestricted indirect by ‘I-B’ (indirect basic).

For these approaches (D, I-PW and I-B) we consider three broad possibilities depending on

5Previously, we performed seasonal unit root tests as proposed by Osborn et al. (1988) to all of the com-
ponents. The results indicate that they do not show seasonal unit roots in general and that the assumption
of only one unit root, linear growth and deterministic seasonality seems reasonable (details are available upon
request).

6In a real application correcting outliers with IIS would be a better option than jut correcting large outliers.
However, as our objective in this application is comparing methods we opt for correcting large residuals, in all
the forecasting strategies, because it is a simpler and less computationally costly alternative.
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the regressors to be included in the General Unrestricted Model (GUM). For the models of the

components that belong to some single-cycle subset we only include the corresponding cycle,

seasonal dummies and outlier indicators. For the other models, apart from own lags, seasonal

dummies and outlier indicators, we consider three possibilities: a) No other regressor, b) Lags

of the aggregated CPI∗ (only for the indirect procedures), c) Lags of eight broad categories

which add up to the CPI, we denote this option as Dissaggregated information (DI).

For the I-PW procedure, the components which do not belong to any single-cycle subset

can be modeled individually or all together with a scalar model for the sub-aggregate Rest

that adds up all those series. This last possibility can be considered to be a restricted version

of I-PW in which the forecast of the components in Rest is restricted to add up to the forecast

of its sub-aggregate. We denote this approach as I-PW-Rest.

If when using the approach I-PW-Rest forecasting the components in Rest is of interest,

one could proceed as in Guerrero and Peña (2003), whose general combining rule allows to

produce individual forecasts restricted to add up to the forecast of the aggregate7

Thus, we have six different I-PW possibilities, three I-B, and two direct (D). For the D

and I-B alternatives, we add an additional possibility consisting of including dynamic factors

estimated from all the disaggregates (D-DFM and I-B-DFM). Therefore, we end up with 13

alternatives.

Table 3 includes a summary of the equations for the different forecasting procedures. From

options a to c above, only option a is included in the table, the other two options are quite

clear extensions.

Equations in table 3 represent the initial GUMs from where final forecasting models are

selected using Autometrics with correction for large residuals. The selection of the models is

carried out in two steps. First we use a nominal size of 0.25% to select variables, lags and

impulse indicators. Retained indicators are stored. In a second step we consider the same

GUM augmented with the retained impulse indicators and a target size of 5% with no outlier

correction.

7.3 Forecasting comparison

Table 4 includes the results of an out of sample forecasting exercise for the evaluation period

2011.1 − 2016.12. At each month of this period the 13 forecasting models described above

are estimated using information up to the previous month, and multi-step ahead forecasts

are produced for horizons H = 1 to H = 12. The search of the single-cycle subsets, and the

corresponding estimation of the common cycles, is carried out only each December. Hence, for

the PW approaches we are using less information than the available in real-time forecasting,

except for January.

First row of table 4 includes the root mean squared forecast error (RMSFE) of ∆12log(CPI∗)

7Note that given the potentially large number of series in Rest a VARMA model for those components (as
proposed by Guerrero and Peña (2003)) would be, in general, unfeasible, so it would have to be substituted
by ARIMA models for the individual components. Thus, it would be necessary to redefine the corresponding
variance-covariance matrices of the procedure.
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Table 3: Summary of the forecasting exercises

Model Description

D ∆cpit = c+
∑5

k=1 φk∆cpit−k + φ12∆cpit−12 + φ24∆cpit−24 +
∑11

i=1 γiSi,t + εt

D-DFM ∆cpit = c+
∑5

k=1 φk∆cpit−k + φ12∆cpit−12 + φ24∆cpit−24+∑5
k=1 δkFt−k +

∑11
i=1 γiSi,t + εt

I-PW

case i) Series inside some subset

∆xi,t = c+ δĈCit +
∑11

i=1 γiSi,t + εi,t

case ii) Series not in any subset

∆xi,t = c+
∑5

k=1 φk∆xi,t−k + φ12∆xi,t−12 + φ24∆xi,t−24 +
∑11

i=1 γiSi,t + εi,t

I-PW-Rest
For series inside some subset, same as I-PW case i.

For the others, only its corresponding sub-aggregate is forecast
in a model with the same structure as I-PW case ii

I-B ∆xi,t = c+
∑5

k=1 φk∆xi,t−k + φ12∆xi,t−12 + φ24∆xi,t−24 +
∑11

i=1 γiSi,t + εi,t

I -B-DFM ∆xi,t = c+
∑5

k=1 φk∆xi,t−k1 + φ12∆xi,t−12 + φ24∆xi,t−24+∑5
k=1 δkFt−k +

∑11
i=1 γiSi,t + εi,t

- Lower case letters denote logarithms, and cpi denotes log(CPI∗).
- ĈCit stands for the estimated common cycle of the subset to which series i belongs.
- All the equations represent the initial GUMs form where models are selected using Autometrics with control
for large residuals. The selection is carried out in two steps. First we use a target size of 0.25% to select
variables, lags and impulses. Retained impulses are stored. In a second step we consider the same GUM
augmented with the retained impulses and a target size of 5% control for outliers. For the I-PW approach
selection is not performed over ĈCit.
- Si,t are centered seasonal dummies.
- In models D-DFM and I-B-DFM the q-dimensional factors (F ) are computed from the difference of all the
components of the CPI∗. The optimal number of factors is chosen with the information criteria of Bai and
Ng (2002). The factors are forecast in a VAR model, where lags are selected with Autometrics with control
for large residuals. The same two step procedure for selecting impulses and regressors explained above applies
in this case.

for horizons H = 1 to H = 12 of the direct procedure. All the other values in the table are

ratios with respect to the first row. Table 5 includes pvalues of the Diebold-Mariano tests for

comparing forecasting accuracy of selected methods.

In what follows we list the main conclusions from the forecasting comparison:

i. Table 4 shows that the use of disaggregated information in a scalar model for the aggregate

(approach I-DI), as proposed by Hendry and Hubrich (2011), improve the RMSFE between

2 and 8 percentage points, and these improvements are statistically significant for horizons

7 to 12. The inclusion of dynamic factors extracted form the disaggregates improves
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the forecasting accuracy only in short horizons, but the improvements are statistically

significant only for one step ahead forecasts.

ii. When modeling the disaggregates without including additional information beyond the

own lags (I-B approach in row 4 of table 4) the forecasting accuracy for short and medium

horizons (1 to 6) is similar (not statistically distinguishable) to that of the baseline. For

long horizons improvements in RMSFE range from 5 to 12 percentage points and are

statistically significant.

iii. These improvements are even more important when including disaggregated information

in the individual models of the components (approach I-B-DI in row 6) as they range

from 8 to 17 percentage points. Again, the disaggregated information in terms of lags

of official sub-aggregates of the CPI is much more relevant that the information from

dynamic factors.

iv. The inclusion of the lagged CPI∗ (row 5) or dynamic factors (row 7) in the models for

the components (approaches I-B-CPI and I-DFM) deliver similar results as those of the

baseline, and are dominated by simple disaggregated approach I-B in long horizons (row

4).

v. The I-PW approach (row 8) delivers somewhat better results than the baseline in short

horizons (1 to 6), but differences are not statistically significant. In horizons 7 to 12

reductions in the RMSFE range from 9 to 18 percentage points and are statistically

significant.

vi. The comparison between I-PW and I-B indicates that the former beats the latter in all

horizons with improvements that range between 1 and 7 percentage points. As table 5

shows, these differences are statistically significant at the 10% for horizons 9 to 12.

vii. When adding lags of the broad categories of CPI in the pairwise approach I-PW-DI (row

10) and in the simple disaggregated approach I-B-DI(row 6), the former dominates in

horizons 1, 3 and 9 to 12, in the other horizons RMSFE are the same. For the horizons that

I-PW-DI dominates differences are statistically significant at the 10% only for horizons

11 and 12, as table 5 shows.

viii. The I-PW-Rest approach improves the RMSFE with respect to I-PW in all horizons.

These differences are not statistically significant for horizons 1 to 4 (see table 5). For

horizons 5 to 12 the improvements are remarkable. Starting with a RMSFE gain of 13

percentage points, the differences in favor of I-PW-Rest increase with the forecasting

horizon and reach 23 percentage points in horizon 12. As table 5 shows the differences

are statistically significant for those horizons.

ix. The forecasting gains of I-PW-Rest with respect to the baseline are even more remarkable.

Staring from 6 percentage points in horizon 1, improvements in RMSFE systematically

increase with the horizon to reach 42 points in H=12.
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In summary, the pairwise approach performs better than all other alternatives considered

in this paper. It gets bigger improvements in forecasting accuracy when using the restricted

alternative (I-PW-Rest). This implies forecasting the series outside the single-cycle subsets

with the restriction that their forecasts aggregate to the direct forecast of their corresponding

sub-aggregate. It must be noted that this strategy can only be implemented in the pairwise

approach that singles out the series which can be forecast with such restriction. Clearly, the

option of using the aggregate of all series, baseline model, is not good at all.

It is relevant to note that the relative forecasting performance of I-PW-Rest with respect the

baseline model is exclusively due to the specification and individual treatment of the compo-

nents with common cycles restrictions. This points out that extending the pairwise approach

by including not only common cycles, but common trends, and eventually common breaks

and common seasonality which could affect the other components, seems a very promising

approach.

Table 4: Relative RMSFE ∆12log(CPI∗). (First row: RMSFE for the baseline. All the others
are ratios with respect to the first)

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 H=9 H=10 H=11 H=12

(1) D (baseline) 0.26 0.46 0.61 0.71 0.80 0.90 1.02 1.14 1.25 1.36 1.46 1.57
(2) D-DI 0.98 0.95 0.93 0.95 0.95 0.93 0.92* 0.92** 0.92** 0.93** 0.94** 0.95**
(3) D-DFM 0.93** 0.93 0.96 0.97 0.99 1.01 1.02 1.03 1.02 1.02 1.02 1.02

(4) I-B 0.97 1.01 1.01 0.99 0.98 0.97 0.95* 0.92** 0.90** 0.89** 0.89** 0.88**
(5) I-B-CPI 0.97 0.99 1.01 1.03 1.05 1.07* 1.06* 1.04 1.03 1.04 1.04 1.04
(6) I-B-DI 0.98 0.99 0.97 0.95 0.94 0.92* 0.89** 0.87** 0.85** 0.85** 0.84** 0.83**
(7) I-DFM 0.94 0.99 1.04 1.07 1.09* 1.08* 1.05 1.02 1.00 0.98 0.97 0.96

(8) I-PW 0.95 0.99 0.99 0.99 0.98 0.95 0.91* 0.88** 0.85** 0.84** 0.82** 0.82**
(9) I-PW-CPI 0.93 0.95 0.95 0.96 0.98 0.98 0.97 0.95 0.93* 0.92* 0.92* 0.92*

(10) I-PW-DI 0.96 0.99 0.96 0.95 0.95 0.93 0.89* 0.87** 0.84** 0.83** 0.82** 0.81**

(11) I-PW-Rest 0.94 0.95 0.92 0.90 0.85* 0.79** 0.75** 0.71** 0.67** 0.63** 0.60** 0.58**
(12) I-PW-Rest-CPI 0.96 0.98 0.95 0.92 0.87* 0.82** 0.79** 0.76** 0.73** 0.68** 0.64** 0.63**
(13) I-PW-Rest-DI 0.95 0.97 0.97 0.96 0.94 0.88 0.82** 0.77** 0.71** 0.65** 0.61** 0.59**

* Significantly different from the baseline at the 10% level using the Diebold-Mariano test.
** Significantly different from the baseline at the 5% level using the Diebold-Mariano test.

Table 5: P-values of Deibold-Mariano tests for selected comparisons

H=1 H=2 H=3 H=4 H=5 H=6 H=7 H=8 H=9 H=10 H=11 H=12

4 vs 8 0.16 0.22 0.21 0.43 0.43 0.30 0.21 0.15 0.09 0.05 0.04 0.04
2 vs 8 0.28 0.29 0.25 0.33 0.40 0.37 0.44 0.09 0.00 0.00 0.00 0.00
6 vs 8 0.27 0.48 0.34 0.28 0.29 0.28 0.31 0.39 0.49 0.35 0.32 0.39
2 vs 11 0.28 0.50 0.45 0.25 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00
6 vs 11 0.29 0.33 0.28 0.22 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00
8 vs 11 0.45 0.31 0.21 0.14 0.06 0.01 0.00 0.00 0.00 0.00 0.00 0.00
6 vs 10 0.28 0.44 0.37 0.49 0.42 0.45 0.48 0.48 0.36 0.17 0.10 0.08

- Row names refer to the lines of table 4
- The null hypothesis is that the RMSFE are equal.

23



8 Concluding remarks

This paper deals with the issue of proposing a strategy to discover specific common cycles in

a large set of disaggregates. We showed that, when focusing on groups in which the series have

single common cycles, the discovery can be carried out in a pairwise fashion using bivariate

VAR models.

The strategy consists of testing for common cycles between all possible pairs of series and

constructing groups in which almost all pairs show a common cycle. The statistical properties

of this procedure were studied both when N and T → ∞ and when N is fixed and T → ∞.

Theoretical results indicate that the pairwise strategy has good properties in both cases.

An interesting characteristic of our proposal is that it does not rely on any type of cross-

sectional averaging method. This explains why we can deal with pervasive and non-pervasive

common cycles, both when N is fixed and when it goes to infinity. Additionally, as we do

not need idiosyncrasies to average out as N increases, we do not need to restrict idiosyncratic

cross-correlation. Monte Carlo results showed a good performance of our procedure in finite

samples.

Extensions of this paper include generalizations for I(1) variables which can be cointegrated,

for non-contemporaneous short run commonalities, and for the consideration of general and

sectorial common cycles.

We applied the procedure to the US CPI broken down in 159 components. Our proposal for

forecasting the aggregate is to do it indirectly, by constructing single-equation models for each

component including the restrictions derived from the single-cycle subsets and, then, adding

up the components’ forecast. In a forecasting competition exercise we compared the ability

of our procedure for forecasting the aggregate with other direct and indirect alternatives.

The results show that disaggregation could be greatly relevant for forecasting, and it can be

even better when it is done selectively. This means forecasting by single-equation models

the components with single-cycle restrictions and the rest by a scalar model for its sub-

aggregate. This points out that considering other common features that could involve more

components, seems promising. In this way, we could discover by pairwise methods more

complex relationships between the components and improve further the indirect forecast of

the aggregate. In conclusion, if disaggregated information exists, it is not efficient to ignore

it, and looking for single-feature subsets of components is a very useful and feasible strategy

to exploit that information.
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Appendix A Monte Carlo results for different relax-

ation parameters

Table A.1: Gauge and Potency of the Pairwise procedure. DGP 1 (ϕ = 5%, ϕ∗ = 0.5%)

λ = 0 (no relaxation)

S1 = 10 S1 = 25 S1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent innovations)

T = 400 0.0 86.3 0.0 75.7 0.0 70.2
T = 200 0.0 84.4 0.0 72.0 0.0 65.8
T = 100 0.1 73.1 0.0 59.0 0.0 52.0

β = −0.3, Q = 10 (non zero correlation with 20 other innovations)

T = 400 0.0 86.7 0.0 78.6 0.0 73.4
T = 200 0.0 86.6 0.0 76.5 0.0 70.9
T = 100 0.0 81.6 0.0 70.1 0.0 64.6

β = −0.3, Q = 20 (non zero correlation with 40 other innovations)

T = 400 0.0 87.8 0.0 80.1 0.0 73.7
T = 200 0.0 86.2 0.0 77.8 0.0 73.0
T = 100 0.0 83.5 0.0 71.5 0.0 66.6

β = −0.3, Q = 30 (non zero correlation with 60 other innovations)

T = 400 0.0 88.8 0.0 79.2 0.0 74.7
T = 200 0.0 87.6 0.0 78.2 0.0 73.1
T = 100 0.0 84.4 0.0 74.0 0.1 67.9

λ = min[2, 0.4 × Ŝλ=0
1 ]

S1 = 10 S1 = 25 S1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent innovations)

T = 400 0.0 97.0 0.0 90.2 0.0 85.6
T = 200 0.0 95.7 0.0 86.8 0.0 81.0
T = 100 0.2 85.3 0.1 72.6 0.0 65.2

β = −0.3, Q = 10 (non zero correlation with 20 other innovations)

T = 400 0.0 96.6 0.0 91.2 0.0 86.7
T = 200 0.0 96.2 0.0 89.8 0.0 84.7
T = 100 0.1 92.5 0.0 83.9 0.0 78.0

β = −0.3, Q = 20 (non zero correlation with 40 other innovations)

T = 400 0.0 96.8 0.0 92.2 0.0 87.2
T = 200 0.0 95.8 0.0 90.6 0.0 86.0
T = 100 0.1 94.0 0.1 84.7 0.0 80.2

β = −0.3, Q = 30 (non zero correlation with 60 other innovations)

T = 400 0.0 96.6 0.0 91.0 0.0 87.3
T = 200 0.0 96.1 0.0 90.4 0.0 86.5
T = 100 0.1 94.5 0.0 86.9 0.1 81.4
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Table A.1 Continued:

λ = min[5, 0.4 × Ŝλ=0
1 ]

S1 = 10 S1 = 25 S1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent residuals)

T = 400 0.0 97.9 0.0 94.9 0.0 92.3
T = 200 0.0 97.2 0.0 92.8 0.0 88.9
T = 100 0.2 88.2 0.1 80.9 0.1 73.8

β = −0.3, Q = 10 (non zero correlation with 20 other innovations)

T = 400 0.0 97.1 0.0 95.4 0.0 92.7
T = 200 0.0 96.9 0.0 95.0 0.0 91.1
T = 100 0.1 93.3 0.1 90.5 0.0 85.4

β = −0.3, Q = 20 (non zero correlation with 40 other innovations)

T = 400 0.0 97.4 0.0 95.9 0.0 92.6
T = 200 0.0 96.3 0.0 94.8 0.0 91.9
T = 100 0.1 94.6 0.1 91.2 0.0 86.9

β = −0.3, Q = 30 (non zero correlation with 60 other innovations)

T = 400 0.0 97.2 0.0 94.6 0.0 92.6
T = 200 0.0 96.7 0.0 94.9 0.0 92.1
T = 100 0.1 95.2 0.1 92.5 0.1 87.7

λ = min[10, 0.4 × Ŝλ=0
1 ]

S1 = 10 S1 = 25 S1 = 40
Gauge Potency Gauge Potency Gauge Potency

β = 0, Q = 0 (independent innovations)

T = 400 0.0 97.9 0.0 95.4 0.0 93.8
T = 200 0.0 97.2 0.0 94.0 0.0 92.0
T = 100 0.2 88.2 0.2 83.1 0.1 78.7

β = −0.3, Q = 10 (non zero correlation with 20 other innovations)

T = 400 0.0 97.1 0.0 96.1 0.0 94.8
T = 200 0.0 96.9 0.0 95.6 0.0 93.6
T = 100 0.1 93.3 0.1 91.6 0.0 89.2

β = −0.3, Q = 20 (non zero correlation with 40 other innovations)

T = 400 0.0 97.4 0.0 96.5 0.0 94.5
T = 200 0.0 96.3 0.0 95.6 0.0 94.1
T = 100 0.1 94.6 0.1 92.2 0.1 90.4

β = −0.3, Q = 30 (non zero correlation with 60 other innovations)

T = 400 0.0 97.2 0.0 95.2 0.0 94.6
T = 200 0.0 96.7 0.0 95.6 0.0 94.2
T = 100 0.1 95.2 0.1 93.4 0.1 91.0

See notes to table 2
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Appendix B Monte Carlo results for false discovery
In this appendix we present the figures of false discovery corresponding to the Monte Carlo

experiments of §5. For each experiment, scenario and sample size we count the number single

cycle subsets in excess of the true number (which is always one) that is composed mainly by

wrong series (50% or more wrong series). We denote the number of additional subsets as Num

ex.Subsets. For each of these additional subsets we count the number of series which do not

share the cycle (Num Sers). Note that when the first single cycle subset does not include all

the correct series, the additional subsets may include some that share the cycle.

Table B.1 include the average across experiments of Num ex.Subsets and Num Sers. In this

table we include the worst possible situation, as it refers to the maximum relaxation parameter

(λ) considered in the paper. As the table shows, false discovery is not a relevant issue for any

sample size or data structure.

Table B.1: False Discovery

λ = min[10, 0.4× Ŝλ=0
j ]

Num ex.Subsets × Num. Sers Num ex.Subsets × Num. Sers Num ex.Subsets × Num. Sers
β = 0, Q = 0 (independent innovations)

T = 400 — — —
T = 200 — — —
T = 100 0.064 x 0.121 0.202 x 0.346 0.21 x 0.303

β = −0.3, Q = 10 (non zero correlation with 20 other innovations)
T = 400 — — —
T = 200 — — —
T = 100 0.02 x 0.046 0.068 x 0.107 0.048 x 0.088

β = −0.3, Q = 20 (non zero correlation with 40 other innovations)
T = 400 — — —
T = 200 — — —
T = 100 0.02 x 0.046 0.048 x 0.096 0.054 x 0.076

β = −0.3, Q = 30 (non zero correlation with 60 other innovations)
T = 400 — — —
T = 200 — — —
T = 100 0.01 x 0.026 0.034 x 0.059 0.066 x 0.11
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